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Introduction / Background

e Learning Map: Formal representation of the
accumulated kowledge and as yet untested
assumptions, regarding the predictability of various
tests run during lead optimization on indices that
inform the question: «What is the potential for this
compound to be a viable, valued drug?»

 Quantitative outcome: a confidence evaluation

 Natural framework for accommodating uncertainty
in parameters and assumtions



Introduction / Background

Objectives of the Learning Map Approach

Facilitate teams going through a clarification of their
decision processes, identify eventual roadblocks

Provide an efficient way to summarize the conclusions of
team discussions and thus to share information with
non-team members (e.g. governance committees)

Provide and use a documented, transparent, a priori
defined, quantitative-based decision process

Compare compounds within a target [project level] and
across targets [portfolio level] based on a formal
confidence evaluation

Help to understand the overall structure of the project



Learning Map Key Concepts

Try to focus on the end point — getting the drug on
the market — not just to the clinic

Not process-oriented (like a process map) but
prediction-oriented

“Why” (Learning Map) versus “When” (Process Map)

Try to be as comprehensive as possible with all the
dimensions even if some of them are not going to be
tested — Not knowing/uncertainty should impact the
confidence evaluation!



Learning Map Key Concepts
Building Blocks

Indices™**

Tests™*

Data™**

Value functions**
— flR)=>[0,1]

Calibration factors™

(complete information
threshold)

Combination functions

e Weights**

e Value-of-information
factors**

** Team input indispensable
* Team input important



Learning Map Key Concepts
Index versus Test

INDEX

A characteristic of a treatment that
must be evaluated to determine
whether it's approvable and provides
meaningful patient outcomes

[0;1]-Histogram

TEST
Represents a unit of information

used to assess our confidence about
a particular index

Data Transformation into [0;1]
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Learning Map Key Concepts

Weights reflect relative

BaS|C StrUCtu re importance of indices in
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higher-level index

“““““““ ___2_----7 Drug “\\\\Q:;\\

1
N
N

VOI face value of each test informin o.

Index, relative to a reference standard for that index; by
convention, VOI for the reference = 1
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Learning Map Key Concepts
Confidence Quantification

(Confidence Distributions)
Qualitative Inspection

a a

0 1 0 1 0 1
Neutral Lower Conf. Higher Conf.

Quantitative Evaluation

Can be summarized / Categorized

Drug 1 Drug 2 Drug 3

il A

1

0123456
L1111 1

00 05 10 15

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10



Learning Map Key Concepts
Confidence Quantification

In the absence of information, confidence distributions
are flat (uniform on [0,1])

As data are collected, confidence distributions are
updated using a Bayesian approach

The distributions of all sub-indices that inform a common
higher-level index are combined using a weighted
average (based on the assigned weights) to yield the
distribution of the higher-level index

Calibration factors for each index regulate how quickly
data from the various tests overcome the prior
distribution of the index



Some Technical Details
Implementation Based on Beta-Binomial Model

A heuristic approach...

e Assume that a team has defined its LM structure —
— All indices defined
— Connections between indices

— Weights associated with each set of indices impacting a common
higher-level index

— All tests defined, plus transformation functions and VOI factors

e One may use a generalization of the beta-binomial model as
an intuitive way of evaluating the LM, that avoids
computationally intensive methods



Some Technical Details
Implementation Based on Beta-Binomial Model

Recall the beta-binomial formulation:
If X | p~ Bin(n, p)
and p ~ Beta(a,b),
then p| X ~ Beta(a+ x,b+n—X)

* Key to this approach: think of a given test result (after transformation to
[0,1]) as an observation from a binomial distribution X|p in a beta-
binomial model, where

— pis the prior distribution of the index in question

— p|Xis the posterior distribution of the index, accounting for the
impact of the observation



Some Technical Details
Implementation Based on Beta-Binomial Model

For each index, settle on a suitable reference unit of information —
perhaps the result of a standard test

Impact of all other tests that inform the same index is defined in relation
to the reference

— Example: Let the reference be represented by a binomial with n=100
(a test twice as valuable would be represented by a binomial with
n=200; a test half as valuable by a binomial with n=50)

* Suppose the reference test result yields a result of 0.68 after
transformation

e Represent this value on a scale from 0 to n, with n being the best
possible result (giving the greatest confidence)

e Hence with a uniform prior (a=b=1) and n=100, we have x=68, n-
x=32, yielding a posterior distribution Beta(69, 33)
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Some Technical Details
Implementation Based on Beta-Binomial Model

Density of Beta(1,1) Density of Beta(69,33)




Some Technical Details
Implementation Based on Beta-Binomial Model

In practice a modification is required to calibrate the rate at
which a particular prior distribution is overwhelmed by the
observed data

 Replace p|X as defined above by introducing an index-specific calibration
factor 0, yielding a posterior distribution that falls between the prior and
the proper posterior of the beta-binomial:

p| X ~ Beta(a+ &,b+6(n-Xx))

e 0O calibrates the impact of the observed data
— Values close to 0 make it very difficult to overcome the prior

— Values close to 1 approximate the beta-binomial posterior



Some Technical Details
Implementation Based on Beta-Binomial Model

On choosing 6

* For each index, elicit from the team a quantification of how much data,
relative to the reference unit of information, would constitute “practically

complete information”
e Statistically, define “practically complete information” in terms of the
magnitude of the standard deviation of the confidence distribution
— E.g.: Choose 8 to achieve a std dev no greater than 0.05 at a mean of
0.5, the point at which (given constant information) the variance of
the beta is maximized



Some Technical Details
Implementation Based on Beta-Binomial Model

On choosing 8 (cont’d)

e Example (cont’d): Suppose the team agrees that for a particular index,
information equivalent to 8 times the reference unit would constitute
“practically complete information”

— Since reference unit is defined by Bin(100, p), complete information
can be represented by Bin(800, p)

* To achieve a posterior mean and std dev of 0.5 and 0.05, respectively,
solve

Var(p| X) = E(p| X)A-E(p| X)) _ 1 0052
l+a+&+b+6(n—x) 4(3+8000)

= 06=97/800=0.121



Some Technical Details
Implementation Based on Beta-Binomial Model

An alternative (less heuristic but operationally simpler) approach

* Previously, test results were represented by binomial distributions in which
n provided a measure of the test’s value relative to the reference

e Fortesti,
p| X ~ Beta(a+x.,b+n —x)

was replaced by

p| X ~ Beta(a+&x,b+6{n. —x})
which can be re-written
p|x ~ Beta(a @‘g b+6eh{1-v})

ransformed test result

Measure of importance of
P (number between 0 and 1)

test result in contributing
to complete information on
index in question



Some Technical Details
Implementation Based on Beta-Binomial Model

e So, the importance of a particular test i in contributing to complete
information on a certain index was determined by assessing N, and an
index-specific @ separately

 Consider instead a single elicitation F, of the importance of a given test j,
relative to what constitutes complete information for the index it informs;

hence
p|Xx; ~ Beta(a+ony,b+on{l-y})
> p|x ~ Beta(a+wFy,b+oF{l-y})

* Since F, already incorporates consideration of the index test i informs, @
is not index-specific but a universal parameter for the learning map,
depending only on the definition of “complete information”



Some Technical Details
Implementation Based on Beta-Binomial Model

The posterior distribution for a particular index informed by k tests is
therefore given by

Kk K
P|X,...% ~ Beta(@+ o) Fy,b+w)d F{l-y})
=1 i=1

Solving for @, assume uniform priors (a=b=1) and the same definition of
“practically complete information” given earlier. It then follows that

a)=97/Z:Fi

Finally, adopt the convention that for complete information, 2F, =1  so
that

— w=97,
— F, represents the proportion of complete information
furnished by test i for the index that test informs



Some Technical Details
Implementation Based on Beta-Binomial Model

On combining indices

* Posterior confidence distributions of a given set of indices that all inform a
common higher-level index may be combined by resampling from each of
the distributions and using a weighted geometric or arithmetic mean, based

on the assigned weights

— E.g.: Let X, X,, X5 represent distributions of a set of sub-indices having
weights w,, w,, w; and a common parent index with distribution Y

e Arithmetic mean: Y ~ woX] + woX, + woX
e Geometric mean: Y ~ XWX, waX, w3
— Approximate empirical distribution of Y with a beta, computing its

parameters a and b using the appropriate transformations of the
observed mean and variance of the empirical distribution



Some Technical Details
Implementation Based on Beta-Binomial Model

On combining indices — back-transformation

* Animportant property in interpreting learning maps:

— If all sub-indices of a common parent index are uniformly distributed,
the parent index should also have a uniform distribution

« However, X;, X,, X; ~ beta(1,1) ¥ Y ~ beta(1,1) !

e Having determined Y ~ beta(a, b), calibrate this distribution by applying a
transformation that produces a uniform distribution if each of the sub-
indices are uniformly distributed:

— Suppose X, X,, X; ~ beta(1,1) > Y~ beta(a, b)
— Letd,=1/a,6,=1/b

— Determine the distribution of the parent index in all cases as
Y ~ beta(6,a, 6,b), regardless of the distributions of the sub-indices




Sample Visualization
LTB4 Pilot Study Outcomes [Indices]
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Objections and Counter-arguments

A tool can not take decisions for us! Best judgment prevails!
— Aid your decision-making, not replace it
— Might highlight some uncovered dimension

Time consuming to develop a Learning Map — Just one more
thing we have to do!

— Development of Templates/Guidelines/Appropriate Software
It is impossible to be comprehensive, i.e., to list everything!
— This is also true when decisions are taken without learning map
For most of the dimensions, decision process is qualitative!

— The Learning map approach also holds a qualitative part (the structure
of the LM) that can be useful by itself.

Only a snapshot — Science is moving very quickly!

— Learning Map should be updated whenever new information is
obtained



