# Learning Maps in Drug Discovery and Development

Andreas Sashegyi, PhD Eli Lilly and Company

## Introduction / Background

- Learning Map: Formal representation of the accumulated kowledge and as yet untested assumptions, regarding the predictability of various tests run during lead optimization on indices that inform the question: «What is the potential for this compound to be a viable, valued drug?»
- Quantitative outcome: a confidence evaluation
- Natural framework for accommodating uncertainty in parameters and assumtions

## Objectives of the Learning Map Approach

- Facilitate teams going through a clarification of their decision processes, identify eventual roadblocks
- Provide an efficient way to summarize the conclusions of team discussions and thus to share information with non-team members (e.g. governance committees)
- Provide and use a documented, transparent, a priori defined, quantitative-based decision process
- Compare compounds within a target [project level] and across targets [portfolio level] based on a *formal* confidence evaluation
- Help to understand the overall structure of the project

## **Learning Map Key Concepts**

- Try to focus on the end point getting the drug on the market – not just to the clinic
- Not process-oriented (like a process map) but prediction-oriented
- "Why" (Learning Map) versus "When" (Process Map)
- Try to be as comprehensive as possible with all the dimensions even if some of them are not going to be tested – Not knowing/uncertainty should impact the confidence evaluation!

## Learning Map Key Concepts Building Blocks

- Indices\*\*
- Tests\*\*
- Data\*\*
- Value functions\*\*

$$- f(\mathbf{R}) => [0,1]$$

- Calibration factors\*
   (complete information threshold)
- Combination functions

- Weights\*\*
- Value-of-information factors\*\*

<sup>\*\*</sup> Team input indispensable

<sup>\*</sup> Team input important

## Learning Map Key Concepts Index versus Test

### **INDEX**

A characteristic of a treatment that must be evaluated to determine whether it's approvable and provides meaningful patient outcomes





Weighting Factor
Strictly Positive Number

Value-of-info (VOI) Factor
Strictly Positive Number

Data Point
Test Dependent

## **Learning Map Key Concepts** Weights reflect relative **Basic Structure** importance of indices in impacting a common higher-level index Drug 0.5 VOI factors reflect the value of each test informing a particular Index, relative to a reference standard for that index; by convention, VOI for the reference = 1

### **Learning Map Key Concepts**

## **Confidence Quantification**

(Confidence Distributions)

### **Qualitative Inspection**



### **Quantitative Evaluation**

### Can be summarized / Categorized







## Learning Map Key Concepts Confidence Quantification

- In the absence of information, confidence distributions are flat (uniform on [0,1])
- As data are collected, confidence distributions are updated using a Bayesian approach
- The distributions of all sub-indices that inform a common higher-level index are combined using a weighted average (based on the assigned weights) to yield the distribution of the higher-level index
- Calibration factors for each index regulate how quickly data from the various tests overcome the prior distribution of the index

## Some Technical Details Implementation Based on Beta-Binomial Model

### A heuristic approach...

- Assume that a team has defined its LM structure
  - All indices defined
  - Connections between indices
  - Weights associated with each set of indices impacting a common higher-level index
  - All tests defined, plus transformation functions and VOI factors
- One may use a generalization of the beta-binomial model as an intuitive way of evaluating the LM, that avoids computationally intensive methods

## Implementation Based on Beta-Binomial Model

### Recall the beta-binomial formulation:

If 
$$X \mid p \sim Bin(n, p)$$
  
and  $p \sim Beta(a, b)$ ,  
then  $p \mid X \sim Beta(a + x, b + n - x)$ 

- Key to this approach: think of a given test result (after transformation to [0,1]) as an observation from a binomial distribution X|p in a betabinomial model, where
  - p is the prior distribution of the index in question
  - -p|X is the posterior distribution of the index, accounting for the impact of the observation

## Implementation Based on Beta-Binomial Model

- For each index, settle on a suitable reference unit of information –
   perhaps the result of a standard test
- Impact of all other tests that inform the same index is defined in relation to the reference
  - Example: Let the reference be represented by a binomial with n=100 (a test twice as valuable would be represented by a binomial with n=200; a test half as valuable by a binomial with n=50)
    - Suppose the reference test result yields a result of 0.68 after transformation
    - Represent this value on a scale from 0 to *n*, with n being the best possible result (giving the greatest confidence)
    - Hence with a uniform prior (a=b=1) and n=100, we have x=68, n-x=32, yielding a posterior distribution Beta(69, 33)

## Some Technical Details Implementation Based on Beta-Binomial Model



## Implementation Based on Beta-Binomial Model

In practice a modification is required to calibrate the rate at which a particular prior distribution is overwhelmed by the observed data

• Replace  $p \mid X$  as defined above by introducing an index-specific calibration factor  $\theta$ , yielding a posterior distribution that falls between the prior and the proper posterior of the beta-binomial:

$$p \mid X \sim Beta(a + \theta x, b + \theta(n - x))$$

- θ calibrates the impact of the observed data
  - Values close to 0 make it very difficult to overcome the prior
  - Values close to 1 approximate the beta-binomial posterior

## Some Technical Details Implementation Based on Beta-Binomial Model

### On choosing $\theta$

- For each index, elicit from the team a quantification of how much data, relative to the reference unit of information, would constitute "practically complete information"
- Statistically, define "practically complete information" in terms of the magnitude of the standard deviation of the confidence distribution
  - E.g.: Choose  $\theta$  to achieve a std dev no greater than 0.05 at a mean of 0.5, the point at which (given constant information) the variance of the beta is maximized

## Implementation Based on Beta-Binomial Model

### On choosing $\theta$ (cont'd)

- Example (cont'd): Suppose the team agrees that for a particular index, information equivalent to 8 times the reference unit would constitute "practically complete information"
  - Since reference unit is defined by Bin(100, p), complete information can be represented by Bin(800, p)
- To achieve a posterior mean and std dev of 0.5 and 0.05, respectively, solve

$$Var(p \mid X) = \frac{E(p \mid X)(1 - E(p \mid X))}{1 + a + \theta x + b + \theta (n - x)} = \frac{1}{4(3 + 800\theta)} = 0.05^{2}$$

$$\rightarrow$$
  $\theta = 97/800 = 0.121$ 

## Implementation Based on Beta-Binomial Model

### An alternative (less heuristic but operationally simpler) approach

- Previously, test results were represented by binomial distributions in which
   n provided a measure of the test's value relative to the reference
- For test *i*,

$$p \mid x_i \sim Beta(a + x_i, b + n_i - x_i)$$

was replaced by

$$p \mid x_i \sim Beta(a + \theta x_i, b + \theta \{n_i - x_i\})$$

which can be re-written

$$p \mid x_i \sim Beta(a + \theta n_i y_i), b + \theta n_i \{1 - y_i\})$$

Measure of importance of test result in contributing to complete information on index in question

Transformed test result (number between 0 and 1)

## Implementation Based on Beta-Binomial Model

- So, the importance of a particular test i in contributing to complete information on a certain index was determined by assessing  $n_i$  and an index-specific  $\theta$  separately
- Consider instead a *single elicitation*  $F_i$  of the importance of a given test i, relative to what constitutes complete information for the index it informs; hence

$$p \mid x_i \sim Beta\left(a + \theta n_i y_i, b + \theta n_i \{1 - y_i\}\right)$$

$$\langle \longrightarrow \rangle p \mid x_i \sim Beta(a + \omega F_i y_i, b + \omega F_i \{1 - y_i\})$$

• Since  $F_i$  already incorporates consideration of the index test i informs,  $\omega$  is not index-specific but a universal parameter for the learning map, depending only on the definition of "complete information"

## Implementation Based on Beta-Binomial Model

 The posterior distribution for a particular index informed by k tests is therefore given by

$$p \mid x_1, ..., x_k \sim Beta(a + \omega \sum_{i=1}^k F_i y_i, b + \omega \sum_{i=1}^k F_i \{1 - y_i\})$$

• Solving for  $\omega$ , assume uniform priors (a=b=1) and the same definition of "practically complete information" given earlier. It then follows that

$$\omega = 97/\sum F_i$$

- Finally, adopt the convention that for complete information,  $\Sigma F_i = 1$  so that
  - $-\omega = 97$
  - $-F_i$  represents the proportion of complete information furnished by test i for the index that test informs

## Implementation Based on Beta-Binomial Model

### On combining indices

- Posterior confidence distributions of a given set of indices that all inform a common higher-level index may be combined by resampling from each of the distributions and using a weighted geometric or arithmetic mean, based on the assigned weights
  - E.g.: Let  $X_1$ ,  $X_2$ ,  $X_3$  represent distributions of a set of sub-indices having weights  $w_1$ ,  $w_2$ ,  $w_3$  and a common parent index with distribution Y

• Arithmetic mean:  $Y \sim w_1 X_1 + w_2 X_2 + w_3 X_3$ 

• Geometric mean:  $Y \sim X_1^{w1}X_2^{w2}X_3^{w3}$ 

 Approximate empirical distribution of Y with a beta, computing its parameters a and b using the appropriate transformations of the observed mean and variance of the empirical distribution

## Implementation Based on Beta-Binomial Model

### On combining indices – back-transformation

- An important property in interpreting learning maps:
  - If all sub-indices of a common parent index are uniformly distributed,
     the parent index should also have a uniform distribution
- However,  $X_1$ ,  $X_2$ ,  $X_3 \sim \text{beta}(1,1) \not\to Y \sim \text{beta}(1,1)$ !
- Having determined  $Y \sim \text{beta}(a, b)$ , calibrate this distribution by applying a transformation that <u>produces a uniform distribution</u> if each of the subindices are uniformly distributed:
  - Suppose  $X_1, X_2, X_3 \sim \text{beta}(1,1) \rightarrow Y \sim \text{beta}(a, b)$
  - Let  $\delta_1 = 1/a$ ,  $\delta_2 = 1/b$
  - Determine the distribution of the parent index in all cases as  $Y \sim \text{beta}(\delta_1 a, \delta_2 b)$ , regardless of the distributions of the sub-indices

## Sample Visualization

### LTB4 Pilot Study Outcomes [Indices]



## **Objections and Counter-arguments**

- A tool can not take decisions for us! Best judgment prevails!
  - Aid your decision-making, not replace it
  - Might highlight some uncovered dimension
- Time consuming to develop a Learning Map Just one more thing we have to do!
  - Development of Templates/Guidelines/Appropriate Software
- It is *impossible to be comprehensive*, i.e., to list everything!
  - This is also true when decisions are taken without learning map
- For most of the dimensions, decision process is qualitative!
  - The Learning map approach also holds a qualitative part (the structure of the LM) that can be useful by itself.
- Only a snapshot Science is moving very quickly!
  - Learning Map should be updated whenever new information is obtained